InfO(1) CUP NATIONAL ROUND

## MONSTERS

The 2017 International Congress of Monsters gathers $n$ monsters coming from all over the world. Their chairman has to solve the following problem: if the $i^{\text {th }}$ monster ( $1 \leq \mathrm{i}$ $\leq \mathrm{n}$ ) has $k_{i}$ fingers, indexed from 0 to $k_{i}-1$, so he can lift $j$ of those fingers ( $0 \leq \mathrm{j} \leq k_{i}$ ), obtaining a certain number, in the following way: if a certain finger is lifted, $2^{\text {finger index }}$ is added to the current number. As a result, the $i^{\text {th }}$ monster can count on his fingers $n r_{i}$ distinct numbers. Therefore, the demanded result is $n r_{1}+n r_{2}+\ldots+n r_{n}$, modulo $10^{9}+7$.

## TASK

Compute the required sum, modulo $10^{9}+7$.

## INPUT FORMAT

The first line of the input file, monsters.in, contains the number $n$.
The second line contains $n$ positive integers, $k_{1}, k_{2}, \ldots, k_{n}$, representing the numbers of fingers of each monster.

## OUTPUT FORMAT

The output file, monsters.out, must contain a single positive integer, the requested sum, modulo $10^{9}+7$.

## LIMITS AND CONSTRAINTS

- $\mathrm{n} \leq 200,000,0 \leq \mathrm{k}_{\mathrm{i}} \leq 1,000,000,000$.
- The fingers are indexed from 0 .


## SUBSTASKS

| Subtask | Score | Additional input constraints |
| :--- | :--- | :--- |
| 1 | 40 | $\mathrm{n} \leq 1.000, \mathrm{k}_{\mathrm{i}} \leq 10.000$ |
| 2 | 100 | $\mathrm{n} \leq 200.000, \mathrm{k}_{\mathrm{i}} \leq 1.000 .000 .000$ |

EXAMPLE

| monsters.in | monsters.out |
| :--- | :--- |
| 2 | 7 |

## EXPLANATIONS

The first monster can obtain 8 numbers:
0 - no finger was lifted;
1 - the index of lifted finger is 0 ;
2 - the index of lifted finger is 1 ;
3 - the indexes of lifted fingers are 0 and 1 ;

InfO(1) CUP NATIONAL ROUND
(7)

4 - the index of lifted finger is 2 ;
5 - the indexes of lifted fingers are 0 and 2 ;
6 - the indexes of lifted fingers are 1 and 2 ;
7 - the indexes of lifted fingers are 0,1 and 2 .
The second monster can obtain 128 numbers.

