InfO(1) CUP NATIONAL ROUND

PROMOTION

Gigel wants to test his cooking abilities and goes to the market to get some supplies. At the market, there are m types of objects sold as promotional packages for a period of n days. On the $i^{\text {th }}$ day, Gigel has two options: he either buys the promotional package available on that day or not. The promotional package is represented by a non-empty subset of the set of the m types of objects and it has a certain price.

TASK

Knowing m, n, the price and the composition of each of the n promotional packages, find the minimal price that Gigel should pay in order to buy at least one object of each of the m types.

INPUT FORMAT

The first line of the input file, promotion.in, contains 2 numbers, m and n.
The next n lines will describe the n promotional packages in this way: the $(i+1)^{\text {th }}$ line ($1 \leq \mathrm{i} \leq \mathrm{n}$) contains $n r$ and p, which stand for the number of objects in the promotional package from that day and its price. Then, on the same line, there are given $n r$ numbers which represent the indexes of the objects that belong to that package.

OUTPUT FORMAT

In the output file, promotion.out, print a positive integer number equal to the minimal price that should be paid in order to buy at least one object of every type.

LIMITS AND CONSTRAINTS

- $1 \leq \mathrm{m} \leq 17,1 \leq \mathrm{n} \leq 1,000,1 \leq \mathrm{p} \leq 1,000,000$
- All numbers found in the input file are positive integers.
- A promotional package shall be bought only completely.
- The indexes of the objects that describe a certain package have values from the following set: $\{1,2, \ldots, m\}$.
- It is guaranteed that there is a solution for all test cases.

SUBSTASKS

Subtask	Score	Additional input constraints
1	50	$\mathrm{~m} \leq 10, \mathrm{n} \leq 100$
2	80	$\mathrm{~m} \leq 15, \mathrm{n} \leq 1.000$
3	100	$\mathrm{~m} \leq 17, \mathrm{n} \leq 1.000$

EXAMPLE

promotion.in	promotion.out				
5	4			21	
3	10	1	3	2	

2	8	1	4			
3	11	5	4	3		
5	27	1	4	2	3	5

EXPLANATIONS

The chosen packages are the first and the third ones, thus obtaining a minimal cost of $10+11=21$. Note that Gigel buys one object of type 1 , one object of type 2, two objects of type 3, one object of type 4 and one object of type 5 .

