InfO(1) CUP 2018
SECOND EDITION
INTERNATIONAL ROUND

MaxComp

MaxComp

For a matrix, let's call a subset of cells, S, connected if there is a path between any two cells of S which consists only of cells from S. A path is a sequence of cells $u_{1}, u_{2}, \ldots, u_{k}$ where u_{i} and $\mathrm{u}_{\mathrm{i}+1}$ are adjacent for any $i=\overline{1, k-1}$

Given a matrix A with N rows and M columns, we define the following formula for a connected subset S of A :

$$
\boldsymbol{w e i g h t}(S)=\max \{A(s) \mid s \in S\}-\min \{A(s) \mid s \in S\}-|S|
$$

where $|*|$ represents the cardinality of a set and $A(s)$ represents the value of the cell s in A.

INPUT

The first line of input contains two number N and M representing the dimensions of the matrix A .

The following N lines describe the matrix. The i -th line contains M integers where the j-th value represents $A(i, j)$.

OUTPUT

Print the maximum value of weight (S) between all connected components S of the given matrix.

GENERAL CONSTRAINTS

- $0 \leq A(i, j) \leq 10^{9}$
- $1 \leq N, M \leq 10^{3}$

SUBTASKS

- For 15 points: $1 \leq N * M \leq 20$
- For other 15 points: $N=1$
- For other 30 points: $N, M \leq 50$

EXAMPLES

Standard input	Standard output
23	2
243	
575	

Explanation:

One of the optimal connected subsets is $\{(1,1),(1,2),(2,2)\}$. $\{(1,1),(2,2)\}$ is not a solution because there is no path between $(1,1)$ and $(2,2)$.

