InfO(1) CUP 2018
SECOND EDITION
INTERNATIONAL ROUND

Cambridge

Cambridge

The admission interview at the prestigious University of Cambridge consist of \boldsymbol{N} tasks, numbered from 1 to \boldsymbol{N}. Alex is there right now, waiting to attend the interview. Takahiro Wong, who has just finished his interview, solved all the tasks. More precisely, he solved the i-th problem after $\mathbf{D}_{\mathbf{1}}$ seconds from the beginning of the interview.

Knowing the fact that he can solve the \boldsymbol{i}-th problem in $\mathbf{T}_{\mathbf{i}}$ seconds, Alex asks himself \boldsymbol{M} questions: $\mathbf{x y}$. For every question, Alex will consider only the tasks from the interval $[\mathbf{x ; y]}$ and he wants to know whether he can solve each of these tasks before Takahiro Wong. (Alex can solve the tasks from the interval [$\mathrm{x} ; \mathrm{y}$] in any order).

For example, let's consider that Alex has to solve the tasks \mathbf{a} and \mathbf{b} (in this order). He will finish task \mathbf{a} after \mathbf{T}_{s} seconds, and task \mathbf{b} after $\mathbf{T}_{a}+\mathbf{T}_{b}$ seconds. Alex will solve both problems before Takahiro Wong if $T_{s}<D_{a}$ and $T_{s}+T_{b}<D_{b}$.

Both Takahiro Wong and Alex will start their interviews at second $\mathbf{0}$.
Help Alex answer correctly to all \boldsymbol{M} questions

STANDARD INPUT

- The first line of the standard input will contain \mathbf{N} and \mathbf{M}.
\boldsymbol{N} - the number of tasks, \boldsymbol{M} - the number of questions.
- On the following N lines, there will be \mathbf{T}_{1} and $\mathbf{D}_{\text {. }}$.
$\mathbf{T}_{\mathbf{i}}$ - the time needed for Alex to solve the \mathbf{i}-th problem
$\mathbf{D}_{\mathbf{i}}$ - the time (from the beginning of his interview) after Takahiro Wong will solve
the i-th problem.
- On the following \boldsymbol{M} lines, there will be \mathbf{x} and \mathbf{y}, representing the interval $[\mathbf{x} ; \mathbf{y}]$

STANDARD OUTPUT

The standard output will contain \boldsymbol{M} lines, the answers to the \boldsymbol{M} questions.
The i-th line will contain:
1, if Alex cand solve all the tasks from the interval [x ; y] before Takahiro
Wond
0, otherwise.

RESTRICTIONS AND SUBTASKS

- $1 \leq \mathrm{T}_{\mathrm{i}}<\mathrm{D}_{\mathrm{i}} \leq 10^{9}$
- The $\mathbf{D}_{\mathbf{i}}$ values are not distinct (there can be a value that appears multiple times)
- Alex can't solve 2 tasks in the same time, but Takahiro Wong can (The Divalues are not distinct).

Cambridge

Subtask	Points	Restrictions
1	15 points	$1 \leq \boldsymbol{N}, \boldsymbol{M} \leq 10$
2	25 points	$1 \leq \boldsymbol{N} * \boldsymbol{M} \leq 10^{5}$
3	15 points	$1 \leq \boldsymbol{N} \leq 10^{3}$ $1 \leq \boldsymbol{M} \leq 10^{5}$
4	45 pointss	$1 \leq \boldsymbol{N}, \boldsymbol{M} \leq 10^{5}$

EXEMPLE

Standard input	Standard output
43	0
1	10
$14 \quad 18$	0
2	7
10	12
3	4
2	4
1	3

Explanation:

The 3rd question refers to the interval [1;3]:

- There are 6 ways Alex can solve the tasks: $(1,2,3),(1,3,2),(2,1,3),(2,3,1)$, $(3,1,2),(3,2,1)$.
- If he solves the tasks in the order $(1,3,2)$, we have to fulfill the following relations:
$T_{1}<D_{1}, T_{1}+T_{3}<D_{3}$ si $T_{1}+T_{3}+T_{2}<D_{2}$. We can see that all of them are true.
- Because Alex found at least one way to solve all the problems before Takahiro Wong, the answer is 1 for the third question.

