

InfO(1) CUP 2018 SECOND EDITION **INTERNATIONAL ROUND**

Cambridge

Cambridge

The admission interview at the prestigious University of Cambridge consist of **N** tasks, numbered from 1 to N. Alex is there right now, waiting to attend the interview. Takahiro Wong, who has just finished his interview, solved all the tasks. More precisely, he solved the *i-th* problem after **D**, seconds from the beginning of the interview.

Knowing the fact that he can solve the *i-th* problem in **T**, seconds, Alex asks himself **M** questions: **x y**. For every question, Alex will consider only the tasks from the interval **[x;y]** and he wants to know whether he can solve each of these tasks before Takahiro Wong. (Alex can solve the tasks from the interval **[x;y]** in any order).

For example, let's consider that Alex has to solve the tasks **a** and **b** (in this order). He will finish task **a** after T_a seconds, and task **b** after $T_a + T_b$ seconds. Alex will solve both problems before Takahiro Wong if $T_a < D_a$ and $T_a + T_b < D_b$.

Both Takahiro Wong and Alex will start their interviews at second **0**.

Help Alex answer correctly to all **M** questions

STANDARD INPUT

- The first line of the standard input will contain **N** and **M**.
 - **N** the number of tasks, **M** the number of questions.
- On the following N lines, there will be **T**_i and **D**_i.
 - **T** the time needed for Alex to solve the **i-th** problem
 - **D**_i the time (from the beginning of his interview) after Takahiro Wong will solve

the **i-th** problem.

• On the following **M** lines, there will be x and y, representing the interval [x; y]

STANDARD OUTPUT

The standard output will contain **M** lines, the answers to the **M** questions.

The *i-th* line will contain:

1, if Alex cand solve all the tasks from the interval [x;y] before Takahiro Wond

0, otherwise.

RESTRICTIONS AND SUBTASKS

- $1 \leq T_i < D_i \leq 10^9$
- The **D**, values are not distinct (there can be a value that appears multiple times)
- Alex can't solve 2 tasks in the same time, but Takahiro Wong can (The D values are not distinct).

InfO(1) CUP 2018 SECOND EDITION INTERNATIONAL ROUND

Cambridge

Subtask	Points	Restrictions
1	15 points	$1 \le N, M \le 10$
2	25 points	$1 \le N * M \le 10^5$
3	15 points	$1 \le N \le 10^3$ $1 \le M \le 10^5$
4	45 pointss	$1 \leq N, M \leq 10^5$

EXEMPLE

Standard input	Standard output
4 3	0
1 10	0
14 18	1
27	
10 12	
3 4	
2 4	
1 3	

Explanation:

The 3rd question refers to the interval [1;3]:

- There are 6 ways Alex can solve the tasks: (1,2,3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
- If he solves the tasks in the order (1, 3, 2), we have to fulfill the following relations:
- $T_1 < D_1$, $T_1 + T_3 < D_3$ si $T_1 + T_3 + T_2 < D_2$. We can see that all of them are true.
 - Because Alex found at least one way to solve all the problems before Takahiro Wong, the answer is 1 for the third question.