Sunday $13^{\text {th }}$ February, 2022

Problem Date

Input file stdin
Output file stdout

Fujiwara-san loves dates! She calls a date a string of form $y / m / d$ where d, m and y are positive integers without leading zeroes that represent a calendar date (d is the day, m is the month, y is the year). The precise rules for a valid date is the following:

- $y \in\{1,2, \ldots\}$.
- $m \in\{1, \ldots, 12\}$.
- If $m \in\{1,3,5,7,8,10,12\}$, then $d \in\{1, \ldots, 31\}$.
- If $m \in\{4,6,9,11\}$, then $d \in\{1, \ldots, 30\}$.
- If $m=2$ and y is either a not a multiple of 4 , or both a multiple of 100 and not a multiple of 400 , then $d \in\{1, \ldots, 28\}$.
- If $m=2$ and y is a multiple of 4 , and either not a multiple of 100 or a multiple of 400 , then $d \in\{1, \ldots, 29\}$.
For example, 2022/2/14, 2024/2/29 and 2000/2/29 are valid dates; whereas 2022/02/14, 2022/2/29 and $2100 / 2 / 29$ are not valid dates.

Fujiwara-san has recently received a sequence of symbols s_{1}, \ldots, s_{n}, where $s_{i} \in\{0,1, \ldots, 9, /\}$. She now wants to ask: how many sequences of indices $1 \leq i_{1}<\ldots<i_{k} \leq n$ exist such that $s_{i_{1}}, \ldots, s_{i_{k}}$ are a valid date?

Input data

The first line of the input contains the integer n. The second line contains the symbols s_{1}, \ldots, s_{n}, not separated by spaces.

Output data

Output the answer modulo $10^{9}+7$.

Restrictions

- $1 \leq n \leq 100000$.

$\#$	Points	Restrictions
1	12	$n \leq 15$
2	7	$n \leq 1000, s_{i} \in\{5, /\}$
3	8	$s_{i} \in\{5, /\}$
4	7	$s_{i}=/$ or $s_{i} \geq 5$
5	8	$s_{i} \neq 0, s_{i} \neq 2$
6	9	$n \leq 1000, s_{i} \neq 2$
7	11	$s_{i} \neq 2$
8	38	No further restrictions.

InfO(1) Cup, Day 2
Ploiesti, Romania
Sunday $13^{\text {th }}$ February, 2022

Examples

Input file	Output file	Explanations
8 $55 / 55 / 55$	12	$5 / 5 / 5$ appears 8 times within the input, and $55 / 5 / 5$ appears 4 times.
7	9	$4 / 2 / 2,4 / 2 / 9,4 / 2 / 29$ all appear 2 times, and $44 / 2 / 2,44 / 2 / 9,44 / 2 / 29$ all appear once.
$84 / 2 / 29$ $11 / 11 / 31$	24	$1 / 1 / 1,1 / 1 / 3,1 / 1 / 31$ appear 4 times each $, 1 / 11 / 1,1 / 11 / 3,11 / 1 / 1$, $11 / 1 / 3,11 / 1 / 31$ appear 2 times each, and $11 / 11 / 1,11 / 11 / 3$ appear once.
22		
$11 / 2 / 43432 / 534 / 123 / 234$	66078	

