Problem Valentine's Day

Input	stdin
Output	stdout

"Happy Valentine's Day to all programming lovers!"

Little Square has received a gift for Valentine's Day from his girlfriend, Princess Square. The gift consists of an array a_{1}, \ldots, a_{n} of integers between 1 and n. She also told Little Square that a permutation p_{1}, \ldots, p_{n} is perfect if $p_{i} \geq a_{i}$ for all $1 \leq i \leq n$. He knows that Princess Square loves the number k, so in order to impress her, he will do the following.

1. Write all perfect permutations of length n on a paper.
2. Sort them in increasing lexicographic order. (We say that a permutation p_{1}, \ldots, p_{n} is less than a permutation q_{1}, \ldots, q_{n} in lexicographic order if and only if $p_{1}=q_{1}, \ldots, p_{i-1}=q_{i-1}$ and $p_{i}<q_{i}$ for some $1 \leq i \leq n$.)
3. Select the k-th permutation on the list and send it back to Princess Square as a gift.

But since it is already 8 PM and Valentine's Day ends in 4 hours, he needs to do this very fast, so he asks for your help. Write a program which, given n, k and the array a_{1}, \ldots, a_{n}, finds the k-th perfect permutation of length n in lexicographic order, and save Valentine's Day!

Input data

The first line of input contains the integers n and k. The second line of input contains the integers a_{1}, \ldots, a_{n}, separated by white space.

Output data

The output must contain a single line, which contains the desired permutation p_{1}, \ldots, p_{n}, separated by white space. It is guaranteed that such a permutation exists for every test case.

Restrictions

- $1 \leq n \leq 300000$
- $1 \leq k \leq 2 \times 10^{9}$

$\#$	Points	Restrictions
1	9	$k=1$
2	7	$n \leq 9$
3	15	$n \times k \leq 300000$
4	19	$n \leq 1000$
5	14	$a_{1} \geq a_{2} \geq \ldots \geq a_{n}$
6	20	$n \leq 100000$
7	16	No further restrictions

Examples

Input	Output
$\begin{array}{lllll} 5 & 3 & & & \\ 1 & 3 & 1 & 2 & 4 \end{array}$	13425
$\begin{array}{llllllllll} \hline 9 & 1 & & & & & & & \\ 4 & 2 & 2 & 5 & 1 & 7 & 9 & 6 & 1 \end{array}$	423517968
$\begin{array}{lllllllll} 10 & 42 \\ 5 & 1 & 3 & 2 & 5 & 4 & 9 & 9 & 6 \end{array}$	51376410982
```20 819011990 6 12 1 2 13 3 13 9 1846 11 7 1 5 7 6 6 1 1```	$\begin{array}{lllllllllll} \hline 6 & 12 & 1 & 2 & 13 & 4 & 20 & 10 & 18 & 5 & 14 \\ 11 & 15 & 3 & 16 & 19 & 9 & 7 & 17 & 8 & & \end{array}$

## Explanations

First example Little Square's list is the following.

1. $\langle 1,3,2,4,5\rangle$
2. $\langle 1,3,2,5,4\rangle$
3. $\langle 1,3,4,2,5\rangle$
4. $\langle 1,3,5,2,4\rangle$
5. $\langle 1,4,2,3,5\rangle$
6. $\langle 1,4,3,2,5\rangle$
7. $\langle 1,5,2,3,4\rangle$
8. $\langle 1,5,3,2,4\rangle$
9. $\langle 2,3,1,4,5\rangle$
10. $\langle 2,3,1,5,4\rangle$
11. $\langle 2,4,1,3,5\rangle$
12. $\langle 2,5,1,3,4\rangle$
13. $\langle 3,4,1,2,5\rangle$
14. $\langle 3,5,1,2,4\rangle$
15. $\langle 4,3,1,2,5\rangle$
16. $\langle 5,3,1,2,4\rangle$

Thus we select the 3 rd one i.e. $\langle 1,3,4,2,5\rangle$.

Second example The first few permutations in Little Square's list are the following.

1. $\langle 4,2,3,5,1,7,9,6,8\rangle$
2. $\langle 4,2,3,5,1,7,9,8,6\rangle$
3. $\langle 4,2,3,5,1,8,9,6,7\rangle$
4. $\langle 4,2,3,5,1,8,9,7,6\rangle$
5. $\langle 4,2,3,5,6,7,9,8,1\rangle$
6. $\langle 4,2,3,5,6,8,9,7,1\rangle$
7. $\langle 4,2,3,5,7,8,9,6,1\rangle$
8. $\langle 4,2,3,5,8,7,9,6,1\rangle$
9. $\langle 4,2,3,6,1,7,9,8,5\rangle$
10. $\langle 4,2,3,6,1,8,9,7,5\rangle$

Thus we select the first one i.e. $\langle 4,2,3,5,1,7,9,6,8\rangle$.

