

Problem Valentine's Day

Input	stdin
Output	stdout

"Happy Valentine's Day to all programming lovers!"

Little Square has received a gift for Valentine's Day from his girlfriend, Princess Square. The gift consists of an array a_1, \ldots, a_n of integers between 1 and n. She also told Little Square that a permutation p_1, \ldots, p_n is *perfect* if $p_i \ge a_i$ for all $1 \le i \le n$. He knows that Princess Square loves the number k, so in order to impress her, he will do the following.

- 1. Write all perfect permutations of length n on a paper.
- 2. Sort them in increasing *lexicographic order*. (We say that a permutation p_1, \ldots, p_n is less than a permutation q_1, \ldots, q_n in lexicographic order if and only if $p_1 = q_1, \ldots, p_{i-1} = q_{i-1}$ and $p_i < q_i$ for some $1 \le i \le n$.)
- 3. Select the k-th permutation on the list and send it back to Princess Square as a gift.

But since it is already 8 PM and Valentine's Day ends in 4 hours, he needs to do this very fast, so he asks for your help. Write a program which, given n, k and the array a_1, \ldots, a_n , finds the k-th perfect permutation of length n in lexicographic order, and save Valentine's Day!

Input data

The first line of input contains the integers n and k. The second line of input contains the integers a_1, \ldots, a_n , separated by white space.

Output data

The output must contain a single line, which contains the desired permutation p_1, \ldots, p_n , separated by white space. It is guaranteed that such a permutation exists for every test case.

Restrictions

- $1 \le n \le 300\,000$
- $1 \le k \le 2 \times 10^9$

#	Points	Restrictions
1	9	k = 1
2	7	$n \leq 9$
3	15	$n \times k \leq 300000$
4	19	$n \le 1000$
5	14	$a_1 \ge a_2 \ge \ldots \ge a_n$
6	20	$n \le 100000$
7	16	No further restrictions

Examples

Input	Output
5 3	1 3 4 2 5
1 3 1 2 4	
9 1	4 2 3 5 1 7 9 6 8
4 2 2 5 1 7 9 6 1	
10 42	5 1 3 7 6 4 10 9 8 2
5 1 3 2 5 4 9 9 6 2	
20 819011990	6 12 1 2 13 4 20 10 18 5 14
6 12 1 2 13 3 13 9 18 4 6 11 7 1 5 7 6 6 1 1	11 15 3 16 19 9 7 17 8

Explanations

First example Little Square's list is the following.

1. $\langle 1, 3, 2, 4, 5 \rangle$	5. $\langle 1, 4, 2, 3, 5 \rangle$	9. $\langle 2, 3, 1, 4, 5 \rangle$	13. $(3, 4, 1, 2, 5)$
2. $\langle 1, 3, 2, 5, 4 \rangle$	6. $\langle 1, 4, 3, 2, 5 \rangle$	10. $\langle 2, 3, 1, 5, 4 \rangle$	14. $\langle 3, 5, 1, 2, 4 \rangle$
3. $(1, 3, 4, 2, 5)$	7. $\langle 1, 5, 2, 3, 4 \rangle$	11. $\langle 2, 4, 1, 3, 5 \rangle$	15. $\langle 4, 3, 1, 2, 5 \rangle$
4. $\langle 1, 3, 5, 2, 4 \rangle$	8. $\langle 1, 5, 3, 2, 4 \rangle$	12. $\langle 2, 5, 1, 3, 4 \rangle$	16. $(5, 3, 1, 2, 4)$

Thus we select the 3rd one i.e. $\langle 1, 3, 4, 2, 5 \rangle$.

Second example The first few permutations in Little Square's list are the following.

1. $\langle 4, 2, 3, 5, 1, 7, 9, 6, 8 \rangle$	5. $\langle 4, 2, 3, 5, 6, 7, 9, 8, 1 \rangle$	9. $\langle 4, 2, 3, 6, 1, 7, 9, 8, 5 \rangle$
2. $\langle 4, 2, 3, 5, 1, 7, 9, 8, 6 \rangle$	6. $\langle 4, 2, 3, 5, 6, 8, 9, 7, 1 \rangle$	10. $\langle 4, 2, 3, 6, 1, 8, 9, 7, 5 \rangle$
3. $\langle 4, 2, 3, 5, 1, 8, 9, 6, 7 \rangle$	7. $\langle 4, 2, 3, 5, 7, 8, 9, 6, 1 \rangle$	
4. $\langle 4, 2, 3, 5, 1, 8, 9, 7, 6 \rangle$	8. $\langle 4, 2, 3, 5, 8, 7, 9, 6, 1 \rangle$	

Thus we select the first one i.e. $\langle 4,2,3,5,1,7,9,6,8\rangle.$